Na+-inhibitory sites of the Na+/H+ exchanger are Li+ substrate sites.

نویسندگان

  • Philip B Dunham
  • Scott J Kelley
  • Paul J Logue
  • Michael J Mutolo
  • Mark A Milanick
چکیده

Amiloride-inhibitable Li+ influx in dog red blood cells is mediated by the Na+/H+ exchanger, NHE. However, there are substantial differences between the properties of Li+ transport and Na+ transport through the NHE. Li+ influx is activated by cell shrinkage, and Na+ influx is not, as we reported previously (Dunham PB, Kelley SJ, and Logue PJ. Am J Physiol Cell Physiol 287: C336-C344, 2004). Li+ influx is a sigmoidal function of its concentration, and Na+ activation is linear at low Na+ concentrations. Li+ does not inhibit its own influx; in contrast, Na+ inhibits Na+ influx. Li+ prevents this inhibition by Na+. Na+ is a mixed or noncompetitive inhibitor of Li+ influx, implying that both a Na+ and a Li+ can be bound at the same time. In contrast, Li+ is a competitive inhibitor of Na+ influx, suggesting Li+ binding at one class of sites on the transporter. Because the properties of Li+ transport and Na+ transport are different, a simple explanation is that Na+ and Li+ are transported by separate sites. The similarities of the properties of Li+ transport and the inhibition of Na+ transport by Na+ suggest that Li+ is transported by the Na+-inhibitory sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytosolic pH regulation in osteoblasts. Interaction of Na+ and H+ with the extracellular and intracellular faces of the Na+/H+ exchanger

The interaction of Na and H ions with the extracellular and intracellular sites of the Na+/H+ exchanger of the osteosarcoma cell line UMR-106 was investigated. Na ions interact with a single, saturable extracellular transport site. H+ and amiloride appear to compete with Na+ for binding to this site. The apparent affinity for extracellular Na+ (Nao+) and amiloride was independent of intracellul...

متن کامل

Initial localization of regulatory regions of the cardiac sarcolemmal Na(+)-Ca2+ exchanger.

We have analyzed the regulatory properties of the wild-type cardiac Na(+)-Ca2+ exchanger expressed in Xenopus laevis oocytes using the giant excised patch technique. The exchanger is activated by cytoplasmic application of chymotrypsin and exhibits a number of properties that can be changed or abolished by chymotrypsin treatment, including cytoplasmic Na(+)-dependent inactivation, secondary reg...

متن کامل

In dialyzed squid axons oxidative stress inhibits the Na+/Ca2+ exchanger by impairing the Cai2+-regulatory site.

The Na(+)/Ca(2+) exchanger, a major mechanism by which cells extrude calcium, is involved in several physiological and physiopathological interactions. In this work we have used the dialyzed squid giant axon to study the effects of two oxidants, SIN-1-buffered peroxynitrite and hydrogen peroxide (H(2)O(2)), on the Na(+)/Ca(2+) exchanger in the absence and presence of MgATP upregulation. The res...

متن کامل

Kinetic evidence that the Na-PO4 cotransporter is the molecular mechanism for Na/Li exchange in human red blood cells.

The molecular basis for Na/Li exchange is unknown. Li can be transported by the Na pump, anion exchanger (AE1), a background leak, and the Na/Li exchanger. In vivo the intraerythrocyte concentration of Li results from the balance of passive entry, mostly on AE1, and the active extrusion on the Na/Li exchanger. Here we show that erythrocytes have Li-activated PO4 transport that behaves as if it ...

متن کامل

Expression of the thiazide-sensitive Na-Cl cotransporter by rabbit distal convoluted tubule cells.

A thiazide-sensitive Na-Cl cotransporter contributes importantly to mammalian salt homeostasis by mediating Na-Cl transport along the renal distal tubule. Although it has been accepted that thiazide-sensitive Na-Cl cotransport occurs predominantly along the distal convoluted tubule in rats and mice, sites of expression in the rabbit have been controversial. A commonly accepted model of rabbit d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 289 2  شماره 

صفحات  -

تاریخ انتشار 2005